The complete moment convergence for CNA random vectors in Hilbert spaces
نویسنده
چکیده
In this paper we establish the complete moment convergence for sequences of coordinatewise negatively associated random vectors in Hilbert spaces. The result extends the complete moment convergence in (Ko in J. Inequal. Appl. 2016:131, 2016) to Hilbert spaces as well as generalizes the Baum-Katz type theorem in (Huan et al. in Acta Math. Hung. 144(1):132-149, 2014) to the complete moment convergence.
منابع مشابه
On the complete convergence for sequences of random vectors in Hilbert spaces
Let {Xn, n > 1} be a sequence of coordinatewise negatively associated random vectors taking values in a real separable Hilbert space with the kth partial sum Sk, k > 1. We provide conditions for the convergence of ∑∞ n=1 1 n P(max16k6n ‖Sk‖ > εn α) and ∑∞ n=1 logn n P(max16k6n ‖Sk‖ > εn α) for all ε > 0. The converses of these results are also discussed.
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کاملMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017